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Abstract 
46 

47 Weather manifests in spatiotemporally coherent structures. Weather forecasts 

48 hence are affected by both positional and structural or amplitude errors. This has been 

49 long recognized by practicing forecasters (cf., e.g., Tropical Cyclone track and intensity 

errors). Despite the emergence in recent decades of various objective methods for the 

51 diagnosis of positional forecast errors, most routine verification or statistical post-

52 processing methods implicitly assume that forecasts have no positional error. 

53 The Forecast Error Decomposition (FED) method proposed in this study uses 

54 the Field Alignment technique which aligns a gridded forecast with its verifying 

analysis field. The total error is then partitioned into three orthogonal components: (a) 

56 large scale positional, (b) large scale structural, and (c) small scale error variance. 

57 The use of FED is demonstrated over a month-long MSLP data set. As expected, 

58 positional errors are often characterized by dipole patterns related to the displacement 

59 of features, while structural errors appear with single extrema,  indicative of magnitude 

problems. The most important result of this study is that over the test period, more than 

61 50% of the total mean sea level pressure forecast error variance is associated with large 

62 scale positional error. The importance of positional error in forecasts of other variables 

63 and over different time periods remain to be explored.  

64 Key words: forecast error, orthogonal decomposition, positional, structural  
Article Highlights: An orthogonal decomposition of the error variance in a month-

66 long dataset of 12-84 hr mean sea level pressure forecasts indicates that: 

67  50-70% of the error variance is associated with the large scale displacement, 

68  15-30% is associated with large scale structural discrepancies in forecast 
69 features, and  remaining 

 10-20% with small scale random error variance. 
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1. Introduction 

Assessing the quality of forecasts is critical to the development and proper use 

of Numerical Weather Prediction (NWP) systems. Traditional approaches use 

univariate methods comparing forecasts with verifying data independently at a set of 

observation sites or grid-points (i.e., error variance - EV, or root mean square error – 

RMSE), implicitly assuming that NWP errors are spatially independent. This 

assumption goes against basic synoptic experience that weather manifests in 

spatiotemporally organized structures. 

Such synoptic observations about the organization of weather systems have 

motivated decades-long efforts to separate and operationally utilize the positional (e.g., 

location of central pressure or track) and amplitude (i.e., value of central pressure, or 

intensity of maximum winds, Kehoe at al. 2007, Goerss and Sampson 2004, Goerss 

2007) errors associated with Tropical Cyclones (TC, see, e.g., Colby 2016). Errors in 

the central position of TCs can be further decomposed into along and across track errors 

(Buckingham et al. 2010). More recently, similar statistics have also been evaluated for 

extratropical cyclones (e.g., Colle and Charles,2011). 

Motivated by the decomposition for TC errors, the past decades saw the 

emergence of a number of other feature-based approaches. These studies include the 

object-oriented approach of Ebert and McBride 2000, Nachamkin 2004, and Davis et 

al. (2006), as well as a study by Wernli et al. (2008) that focuses on small regions 

around selected features to determine structure, amplitude, and location related error 

statistics. Guilleland et al. (2009) offers a review of other related methods. 
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Other studies take a more systematic approach to forecast error decomposition. 

These use field deformation (also referred to as optical flow) to smoothly deform one 

field to align it with another, e.g. verification field. In its verification applications, field 

deformation is used to decompose full 2D forecast error fields (as opposed to only 

errors related to selected features). A study by Hoffman et al. (1995), further discussed 

in the next section, and the correlation and variational optic-flow-based technique of 

Keil and Craig (2007) and Marzaban et al. (2009) are examples of this type of approach. 

The field deformation concept has been first developed and used for other applications 

(e.g., data fusion - Mariano, 1990; hurricane relocation - Hoffman et al., 1995; bias 

correction - Nehrkorn et al., 2003; and data assimilation - Lawson and Hansen, 2005, 

Ravela et al., 2007, Beechler et al. 2010). 

In this study, a new method called Forecast Error Decomposition (FED) is 

introduced, using the Field Alignment (FA) technique of Ravela (2007a, b). FA, and 

its application in FED are introduced in Section 2. The experimental data and setup are 

described in Section 3, while FED application results are shown in Section 4.  Section 

5 offers a brief summary and a discussion of the characteristics of the approach.  

2. Methodology 

One of the first studies that attempted to formally decompose 2D forecast error 

fields into positional and other components is Hoffman et al. (1995). Their method 

concurrently aligns the forecast field (i.e., moves its features on a coarse R15 or T21 

truncation scale), and adjusts its amplitudes to minimize the difference between the 

aligned and adjusted forecast field and the verifying observations or analysis field. 
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Displacement and amplitude errors are related to the positional alignment and 

amplitude adjustment respectively, while the remaining difference between the 

aligned and adjusted forecast and observations or verifying analysis is called “residual” 

error that is a function of the smoothing parameters used in the method. Even though 

the method of Hoffman et al. (1995) provides a conceptual error decomposition, it 

requires the posterior (i.e., after alignment) forecast error covariance as an input, 

making its application problematic. 

2.1 Field Alignment 

As Hoffman et al. (1995) point out, there is no unique way of defining forecast 

displacement errors. In this study, we test the use of an alternative technique, the FA 

(Ravela et al. 2007b) in FED. FA and its variants in the Field Alignment System and 

Testbed (FAST, Ravela et al. 2007a, b) align two gridded fields (in its FED application, 

a forecast with its verifying analysis field) by smoothly remapping the coordinate 

system underlying the state of a variable. For example, for two 2D fields of a state 

variable (e.g. surface temperature), where one field is the observed or analyzed field 

(which would be considered as the target state) and the other one is a forecast of that 

field valid at the same time, the FA method estimates a smooth 2D displacement vector 

field that aligns the forecast with the analysis field. If the displacement vectors are 

applied to each grid point of the original forecast field as a translation operation in 2D 

space, the result is an adjusted forecast field for which the difference in RMSE 

between this aligned field and the analysis field (i.e., cost function) is minimized. The 

displacement vector field and the aligned field are derived through a variational 

minimization of the cost function in 
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FA (Ravela 2007). The smoothness of the displacement vector field is 

controlled via a “smoothness wavenumber parameter” (SWP) in the FA truncation 

algorithm (Ravel 2012). SWP defines the scales at which alignments of features 

between two fields are performed. Smaller scale features are moved along with the 

larger scale features that are aligned, without additional adjustments. SWP is the only 

free parameter in FA and it is analogous to the choice of truncation in Hoffman et al.’s 

(1995) approach. 

Unlike the method proposed by Hofmann et al. (1995), FA does not rely on 

forecast error covariance information. For additional details on how FA differs from 

the method of Hoffman et al. (1995), see Ravela et al. 2007b and Ravela et al. 2014. 

As for other FA applications, Ravela et al. (2007a, b) and Williams (2008) align the 

first guess forecast field with the latest observations before the application of a 

standard data assimilation scheme. This pre-processing reduces the remaining, mostly 

amplitude errors for a further improvement in the fit to the observations. FA has also 

been used to analyze (with ensemble-based analysis approaches, Ravela et al. 2009; 

Ravela, 2012; Ravela, 2014) and represent (e.g., Ravela et al. 2009) coherent 

structures in other fluid applications. Additionally, FA has been found to be an 

effective tool for nowcasting (Ravela, 2012; Ravela, 2014), initialization, verification 

(Ravela, 2007b; Ravela,  2014), and various other applications (Wang and Ravela 

2009, Ravela 2015a, Ravela 2015b). 

2.2 Forecast Error Decomposition 
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The purpose of this study is to demonstrate the use of the FA technique in FED 

for the quantification of what is subjectively perceived as major modes of error. In our 

study, we will use Error Variance (EV, or on some figures, its root, the Root Mean 

Square error - RMS) as traditional, scalar references measuring the difference between 

two 2D fields. The total forecast error variance (Et) is defined as a difference between 

forecast (F) and analysis (A) fields. A displacement operator (D) adjusts the forecast 

field to a new, aligned state (Fa) for which the difference in RMSE between the forecast 

field (F) and the analysis (A) is minimized. The displacement operator generates both 

the displacement vector field and the scalar field of the magnitude of displacement.  

As pointed out in Section 2.1, only large scale features of F are aligned with 

similar features in A. Correspondingly, positional (Pls) and structural (Sls) errors in F 

will also be defined for the large scales. To calculate large scale positional and 

structural errors, we first smooth fields F, Fa, and A with moving average method, using 

5 points as the smoothing parameter. The level of smoothing (over 5 points) was chosen 

so the lines defined by Fs – Fa
s and Fa

s are approximately orthogonal. To ensure 

orthogonality between large scale positional and large scale structural errors, on line Fs 

– Fa
s, we introduce Fa

s’ (adjusted smoothed aligned forecast) as the point closest to As 

(see the schematic in Fig. 1). Note that since Fa
s’ lies on a line defined by two smoothed 

fields (Fs – Fa
s), this field itself is composed of large scales only, without any additional 

filtering. 

Large scale positional and structural errors are then defined as Fs – Fa
s’, and Fa

s’ 

– As, respectively. Total error is thus decomposed into three orthogonal components: 

large scale positional and structural errors and small scale error, the latter of which is 
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orthogonal to the large scale error components as it resides in a different part of the 

spatial spectrum. Small scale error variance then can be determined either as the 

difference between total error variance and large scale error variance (i.e., the sum of 

large scale positional and large scale structural error variance), or as the sum of the 

differences A – As, and F – Fs. 

3. Experimental Design 

The Forecast Error Decomposition (FED) method described in Section 2 is 

demonstrated using the National Centers for Environmental Prediction (NCEP) Global 

Ensemble Forecasting System (GEFS, Toth and Kalnay 1993, Zhu et al. 2012) with 0.5 

degree horizontal grid spacing, along with Global Forecast System (GFS) analysis 

fields given on the same grid. The GEFS at the time attempted to quantify the forecast 

uncertainty by generating an ensemble of multiple (21) forecasts where both the initial 

conditions (Ensemble Transform with Rescaling – ETR, Wei et al. 2008) and the model 

integrations (stochastic noise, Hou et al. 2006) vary. With global coverage, GEFS 

forecasts are produced four times a day, with each run extending out to 16 days. The 

most recent gridded forecast data and corresponding analyses are available through the 

NOAA National Operational Model Archive and Distribution System (NOMADS, 

Alpert et al. 2002, https://nomads.ncep.noaa.gov/). 

In this study, FED has been applied to Mean Sea Level Pressure (MSLP) and 

850 mb temperature forecasts of the unperturbed (or control) member of the GEFS 

initialized at 00Z during the period September 1 to 30, 2011. This period was 

characterized by two tropical storms (Lee and an unnamed storm), two category one 
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hurricanes (Maria and Nate), and two category four hurricanes (Katia and Ophelia) in 

the Atlantic Basin. 

4. Results 

We first demonstrate FED using an 84 hr forecast initialized at 00Z 9/3/2011. 

On this day hurricane Katia was located in the Caribbean area, classified as a category 

3 hurricane, with maximum sustained wind speeds between 111 mph and 139 mph. 

Therefore, we focus on a domain covering a portion of the Northern Atlantic Ocean 

basin. Figure 2 shows the GFS analysis and the control (unperturbed) GEFS 84 hr 

MSLP forecast valid at the same time. The forecast storm (Fig. 2b) lags behind the 

analysis both in terms of its location and its intensity.  

The decomposition of the error for the same 84-hour forecast is shown in Fig. 

3, with total error as a difference between the original forecast and the verifying 

analysis field (a), the displacement vector field as defined by the difference in the 

position of the original and aligned forecast fields (b), the large scale positional error 

as a difference between the smoothed forecast and the adjusted smoothed aligned 

forecast fields (c), the large scale amplitude error as a difference between the adjusted 

smoothed aligned forecast and the smoothed analysis fields (d), and the small scale 

error as the difference between the total error and total error for large scales. For clarity, 

the displacement vector field (Fig. 3b) has been scaled and the data have been thinned 

(represented only at every 2nd grid point). In the tropical Atlantic, the magnitude of the 

displacement vectors is largest over and around the hurricane itself (Fig. 3b). The 
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structure of the vector field indicates an error related to an along-track delay in the 

forecast movement of the storm.  

Focusing on the area of hurricane Katia, the large scale positional error (Fig. 3c) 

manifests as a dipole pattern, indicating a slower than observed movement of the 

forecast storm. The large scale structural error (Fig. 3d), on the other hand, has a single 

minimum, pointing to a forecast storm less intense than observed.  While the 

magnitudes of the large scale positional and structural error are similar, small scale 

error (Fig. 3e) has a much lower magnitude, except over the hurricane itself (see area 

average error variance numbers on error panels in Fig 3). 

The partitioning of the MSLP forecast error variance components as a function 

of lead times  for the same Katia forecast has been also examined  (Fig. 4). Interestingly, 

the total error variance  initially grows then reaches minimum for 48 hr lead time before 

increasing again. Large scale positional and amplitude components of error follow the 

same trend as the total error. Importantly, for all lead times large scale positional error 

variance represents about ~50% of total error while the amplitude (structural) 

component contributes with only ~15%. The small scale error variance mainly remains 

constant with time. 

Further inspection of the displacement vector field in Fig. 3b reveals a 

displacement over the southeastern US even larger than present around hurricane Katia. 

This particular displacement in the MSLP forecast is associated with the position of 

frontal zones connecting multiple low pressure centers along the eastern US. To 

evaluate error partition related to this phenomenon and a different variable, a shorter 

lead time forecast (24 hr) that was available for 850 mb temperature was evaluated over 
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a domain centered on Eastern US. Figure 5 shows generally good agreement between 

the GFS analysis and the GEFS control (unperturbed) member 24 hr forecast. More 

substantial differences between the two appear over the Great Lakes area. The error 

decomposition is illustrated in Fig. 6. Higher values in large scale amplitude error 

component are detected over the Great Lake area (Fig. 6d). Similarly, large scale 

positional error component is characterized with similar features in addition to higher 

values along the east US coast (Fig. 6c). The domain averaged RMSE values show 

larger contribution to the total error coming from the positional component (~61%) as 

compared to the amplitude component (~28%). Small scale error is confined over 

limited areas in Great Lake region and along the frontal zone (Fig. 6e). 

For a statistically more informative evaluation of FED results,  Fig. 7 displays 

the magnitude of the three orthogonal error components over three large non-

overlapping regions (tropics, Northern and Southern Hemisphere), averaged over the 

month of September 2011. First, we note that as expected, the total error (blue bars in 

Fig. 7) generally exhibits a growing tendency with increasing lead times. In all regions 

and at all lead times, large scale positional error (red bars) is the largest of the three 

components. Approximately 50, 60, and 75% of the total error variance is associated 

with the large scale positional error for features over the Tropics the Northern and 

Southern hemispheres, respectively. Large scale positional error in general also 

displays a growing tendency as a function of lead time, indicative of chaotic error 

growth. 

Over the different lead times and domains, large scale structural, and small scale 

error variance is ~20%-30% and ~10%-15% percent of the total error variance, 

11 



 

 

 

 

 

 

 

 

 

275 

276 

277 

278 

279 

280 

281 

282 

283 

284 

285 

286 

287 

288 

289 

290 

291 

292 

293 

294 

295 

296 

297 

respectively. In contrast to the large scale positional error, these error components do 

not always exhibit a growing tendency with increasing lead time. For example, large 

scale structural / small scale errors do not have a clear growing tendency over the 

Tropics / Tropics and NH, respectively. The lack of error growth in these regions may 

be indicative of model error in representing natural phenomena in these regions.   

5. Summary and Discussion 

A Forecast Error Decomposition (FED) method has been proposed and 

demonstrated, partitioning the total forecast error into three orthogonal components: 

large scale positional, large scale structural, and small scale error. FED uses the Field 

Alignment (FA) technique of Ravela (2007a, b) to align a forecast field with the 

verifying analysis field on a point-by-point basis to minimize their difference subject 

to a predefined smoothness constraint. Positional and structural errors are defined and 

orthogonalized in a low-pass filtered (“smooth”) subspace, ensuring that the filtered-

out, high frequency error component also lies orthogonal to the large-scale components. 

To our knowledge, FED is the first attempt at such an orthogonal error decomposition. 

For example, Hoffman et al’s (1995) partitioning does not guarantee the orthogonality. 

While in the present study we fixed the value of the smoothness parameter, in future 

investigations, more smoothing can be applied at longer lead times, reflecting the 

increasing level of noise, and decreasing level of information at longer lead times. 

The main focus of this study was to demonstrate the use of the FA technique in 

FED for quantifying major modes of forecast error. The use of FED was illustrated 

through a case study (Hurricane Katia) where the approach was applied to two different 

12 



 

 

 

 

 

 

298 

299 

300 

301 

302 

303 

304 

305 

306 

307 

308 

309 

310 

311 

312 

313 

314 

315 

316 

317 

318 

319 

320 

variables, MSLP and 850 mb temperature (Figs. 3 and 6), and through MSLP error 

statistics calculated over a month-long period (Sep. 2011, Fig. 7). Both approaches 

showed consistent results. A significant part of forecast error variance (~50-70%, 

depending on geographical region and lead time) is associated with large scale 

displacement of forecast features. Notably smaller portions of the total error variance 

are related to large scale structural, and small scale error variance. The generality of 

these results will need to be assessed over extended datasets. 

In certain applications, feature-based error decomposition techniques have been 

used extensively. Errors in TC forecasts, for example, have been described in terms of 

position and intensity errors. Such applications (a) require the identification of certain 

features (e.g., the center of a TC), and (b) limit the forecast evaluation to the pre-

selected feature. In contrast, with its more general approach, FED offers more detailed, 

gridded information pertaining not only to pre-selected features but to their 

environment as well. In case of TC forecasts, for example, the quality of the forecasts 

can be described by displacement vector and structural error fields, instead of just the 

error in the position and intensity of the central (or another selected) point of the storm 

(cf. Fig 3). 

Though FA has so far been demonstrated only on 2D fields, its extension to 3D 

is feasible. Even in its current form, the spatially distributed approach of FED naturally 

lends itself for use in more thorough diagnostic studies. Potential applications include 

the assessment of systematic errors in terms of positional and amplitude components. 

Detailed analyses of various experiments can provide useful feedback to model and 

data assimilation technique developers by suggesting areas that may be dominated 
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321 more by positional or structural errors, associated more either with initial value (e.g., 

322 amplifying) or model related (e.g., systematic structural) uncertainties, respectively. 

323 Forecasters have long expressed an interest in separately assessing uncertainty 

324 in the phase (i.e., position) and amplitude of forecast features (see, e.g., NCEP 2004). 

325 Given the encouraging experiments reported here we advocate for the more widespread 

326 use of gridded error decomposition tools such as that tested in the current paper. 

327 
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435 Figures Titles 

436 Figure 1. Schematic of a forecast, verifying analysis, and aligned forecast (open black 
circles) situated in the phase space of full atmospheric variability, shown in 3D here. 
Smoothed versions of these fields (solid red circles) reside in the subspace of large 
scale atmospheric variability, represented with a plane. The orthogonally adjusted 
smoothed aligned forecast (green solid circle) is defined as a point on the Forecast – 
Aligned Forecast line in the large scale subspace closest to the Analysis. Large scale 
positional, large scale structural, and small scale error variances are defined as the 
variance distance between Forecast and Aligned Forecast, and Aligned Forecast and 
Analysis in the large scale subspace, and the sum of the variance distances between 
the original and smoothed Analyses, and the original and smoothed Forecasts, 
respectively. For further discussion, see text. 

Figure 2. GEFS control member 84 hr forecast and the GFS analysis valid at 1200 UTC 
September 6, 2011. 

Figure 3. Total error (a), displacement vector (b), large scale positional error (c), large 
scale amplitude error (d) and small scale error for the 84hr lead time GEFS Control 
member MSLP forecast initialized at 0000 UTC on September 3, 2011. The domain 
average Root Mean Square Error/Difference (RMSE/RMSD) is included for panels a, 
c, d and e. Error Variance/difference magnitudes are illustrated with the color bar (hPa). 

Figure 4. The error variance decomposition for MSLP, for different forecast horizons, 
calculated over the regional domain for a forecast initialized at 0000 UTC September 
6, 2011. 

Figure 5. GEFS control member 24 hr forecast and the GFS analysis valid at 1200 UTC 
September 6, 2011. 

Figure 6. As in Fig. 3, except for 850mb temperature, 24hr lead time and the domain 
centered on Eastern US. 

Figure 7. As in Figure 4, except for various regions of the globe (tropics – 30S-30N, 
Northern - 30-90N, and Southern hemispheres – 30-90S) and for the entire month of 
September 2011. 
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479 

480 Figure 1. Schematic of a forecast, verifying analysis, and aligned forecast (open black 
481 circles) situated in the phase space of full atmospheric variability, shown in 3D here. 
482 Smoothed versions of these fields (solid red circles) reside in the subspace of large 
483 scale atmospheric variability, represented with a plane. The orthogonally adjusted 
484 smoothed aligned forecast (green solid circle) is defined as a point on the Forecast – 
485 Aligned Forecast line in the large scale subspace closest to the Analysis. Large scale 
486 positional, large scale structural, and small scale error variances are defined as the 
487 variance distance between Forecast and Aligned Forecast, and Aligned Forecast and 
488 Analysis in the large scale subspace, and the sum of the variance distances between 
489 the original and smoothed Analyses, and the original and smoothed Forecasts, 
490 respectively. For further discussion, see text. 
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Figure 2. GEFS control member 84 hr forecast and the GFS analysis valid at 1200 UTC 
September 6, 2011. 
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d) amplitude-LS RMSE=1.2466 hPa 
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524 
525 
526 Figure 3. Total error (a), displacement vector (b), large scale positional error (c), large 
527 scale amplitude error (d) and small scale error for the 84hr lead time GEFS Control 
528 member MSLP forecast initialized at 0000 UTC on September 3, 2011. The domain 
529 average Root Mean Square Error/Difference (RMSE/RMSD) is included for panels a, 
530 c, d and e. Error Variance/difference magnitudes are illustrated with the color bar (hPa). 
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547 
548 Figure 4. The error variance decomposition for MSLP, for different forecast horizons, 
549 calculated over the regional domain for a forecast initialized at 0000 UTC September 
550 6, 2011. 
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562 
563 Figure 5. GEFS control member 24 hr forecast and the GFS analysis valid at 1200 UTC 
564 September 6, 2011. 
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575 
576 Figure 6. As in Fig. 3, except for 850mb temperature, 24hr lead time and the domain 
577 centered on Eastern US. 
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609 
610 Figure 7. As in Figure 4, except for various regions of the globe (tropics – 30S-30N, 
611 Northern - 30-90N, and Southern hemispheres – 30-90S) and for the entire month of 
612 September 2011. 
613 
614 
615 
616 
617 
618 
619 
620 
621 
622 
623 
624 
625 
626 
627 
628 
629 
630 
631 
632 

29 


	Partition of Forecast Error into Positional and Structural Components
	Abstract
	1. Introduction
	2. Methodology
	3. Experimental Design
	4. Results
	5. Summary and Discussion
	Acknowledgments
	References



